Anti-GAPDH Mouse Monoclonal Antibody (2B5)

Product Information

  • Product name

    Anti-GAPDH Mouse Monoclonal Antibody (2B5)

  • Immunogen

    Synthetic Peptide

  • Host

    Mouse

  • Reactivity

    Chicken, Dog, Human, Insect, Monkey, Mouse, Pig, Rabbit, Rat, Sheep, Yeast

  • Applications

    IHC, WB

  • Application notes

    Optimal working dilutions should be determined experimentally by the investigator. Suggested starting dilutions are as follows: WB 1:5000, IHC-p 1:200.

  • Clonality

    Monoclonal

  • Isotype

    Mouse IgG1

  • Purification

    The antibody was affinity-purified from mouse ascites by affinity-chromatography using specific immunogen.

Fig.Western blot analysis (1:10,000) of GAPDH expression in Rat brain (lane A), HeLa cell lysate (lane B), Mouse brain (lane C), Rabbit muscle (lane D), Chicken muscle (lane E) and Pig heart (lane F) with Anti-GAPDH mouse monoclonal antibody (2B5).

Product Properties

  • Formulation

    Liquid solution

  • Storage buffer

    Liquid in PBS, pH 7.4, containing 0.02% sodium azide as preservative and 50% Glycerol.

  • Storage instructions

    Stable for one year at -20°C from date of shipment. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Aliquot to avoid repeated freezing and thawing.

  • Shipping

    Gel pack with blue ice.

  • Precautions

    The product listed herein is for research use only and is not intended for use in human or clinical diagnosis. Suggested applications of our products are not recommendations to use our products in violation of any patent or as a license. We cannot be responsible for patent infringements or other violations that may occur with the use of this product.

Additional Information

  • Background

    Glyceraldehyde 3-phosphate dehydrogenase (abbreviated as GAPDH or less commonly as G3PDH) is an enzyme of ~37kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long established metabolic function, GAPDH has recently been implicated in several non-metabolic processes, including transcription activation, initiation of apoptosis ER to Golgi vesicle shuttling, and fast axonal, or axoplasmic transport.

  • Gene ID

    2597

  • Alternative names

    GAPDH; GAPD; CDABP0047; OK/SW-cl.12; Glyceraldehyde-3-phosphate dehydrogenase; GAPDH; Peptidyl-cysteine S-nitrosylase GAPDH

  • Accession

    P04406

Most popular with customers

Reviews

There are no reviews yet.

Be the first to review “Anti-GAPDH Mouse Monoclonal Antibody (2B5)”

Your email address will not be published. Required fields are marked *

Here we provide some standard research protocols for bioscience including molecular biology, cell biology, immunology, plant biology, genetics, etc. To our knowledge, customized protocols are not required for most products. So please try the standard protocols listed below and let us know how you get on.

Preparation methods for Biochemical

Biochemical reagents have been widely used in life science fundamental research as buffer, probes, substrates, intermediates and standards, etc. You may optimize or choose proper protocols for your specific assay. However, some of tips and suggestions listed below may be for your reference.

  1. ♦ What and how to make a "good" buffer?

Antibody application protocols

Antibodies are useful not only to detect specific biomolecules but also to measure changes in their level and specificity of modification by processes such as phosphorylation, methylation, or glycosylation. Here show some protocols and troubleshooting tips on how to get the best from our antibodies.

  1. ♦ Antibody Western Blotting (WB) protocol
  2. ♦ Antibody Immunohistochemistry (IHC) protocol
  3. ♦ Antibody Immunofluorescence (IF) protocol
  4. ♦ Antibody Immunoprecipitation (IP) protocol
  5. ♦ Antibody Enzyme-Linked ImmunoSorbent Assay (ELISA) protocol

Protein&peptide usage suggestions

Synthetic peptides, native or recombinant proteins can be used for medical, academic and research purposes, such as gene therapy, drug screening, antibody production, cell function analysis. Here, we provide some of tips and suggestions for your reference.

  1. ♦ Handling and storage suggestion for peptides and protein
  2. ♦ Cytokines and growth factors for cell culture application

Commonly used assay kits guidelines

Assay kits that are simple and convenient to use, which are superior in performance and require little to no time for assay optimization. Further details of specific products which are needed for individual protocols are given in the protocols themselves in booklet.

We hope this will be helpful for your research work. Please let us know through support@abbkine.com if you need more information or support.

  1. Gastric electrical stimulation improves enteric neuronal survival

    Wang, Nian, et al. International Journal of Molecular Medicine 40.2 (2017): 438-446.

  2. Rifaximin exerts beneficial effects in PI-IBS mouse model beyond gut microbiota

    Jin, Yu, et al. Journal of Gastroenterology and Hepatology (2017).

  3. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice

    Liu, Yuan, et al. BMC infectious diseases 17.1 (2017): 403.

  4. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells

    Zhu, Fengming, et al. American journal of translational research 9.4 (2017): 1694.

  5. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis

    Niu, Xuan, et al. Arteriosclerosis, Thrombosis, and Vascular Biology (2017): ATVBAHA-116.

  6. Severe fever with thrombocytopenia syndrome virus inhibits exogenous Type I IFN signaling pathway through its NSs in vitro

    Chen, Xu, et al. PloS one 12.2 (2017): e0172744.

  7. Molecular cloning, characterization and tissue specificity of the expression of the ovine CSRP2 and CSRP3 genes from Small-tail Han sheep (Ovis aries)

    Liu, G, et al. Gene 580.1(2016): 47-57.

  8. Ikaros 6 protects acute lymphoblastic leukemia cells against daunorubicin-induced apoptosis by activating the Akt-FoxO1 pathway

    Han, Juan, et al. Journal of Leukocyte Biology (2016): jlb-2A0116.

  9. Stereotactic injection of shrna GSK-3β-AAV promotes axonal regeneration after spinal cord injury.

    Zuo Y, Xiong N, Zhao H. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36(4): 548-553.

  10. Effects of Buscopan on human gastrointestinal smooth muscle activity in an ex vivo model: Are there any differences for various sections.

    Zhang L, Song J, Bai T, et al. European journal of pharmacology, 2016, 780: 180-187.

  11. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Liu Y, Feng X, Zhang Y, et al. Journal of Orthopaedic Research, 2016.

  12. Blocking Nuclear Factor-Kappa B Protects against Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice.

    Zeng T, Zhou J, He L, et al. PloS one, 2016, 11(3): e0149677.

  13. Possible mechanism by which renal sympathetic denervation improves left ventricular remodelling after myocardial infarction.

    Zheng X X, Li X Y, Lyu Y N, et al. Experimental physiology, 2016, 101(2): 260-271.

  14. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs.

    Zheng X, Li X, Lyu Y, et al. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2016, 22: 2751.

  15. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats.

    Liu W, Wang H, Wang Y, et al. Psychiatry research, 2015, 228(3): 257-264.

  16. Depletion of Kupffer cells attenuates systemic insulin resistance, inflammation and improves liver autophagy in high-fat diet fed mice.

    Zeng T, Liu F, Zhou J, et al. Endocrine journal, 2015 (0).

  17. Downregulation of Sprouty homolog 2 by microRNA-21 inhibits proliferation, metastasis and invasion, however promotes the apoptosis of multiple myeloma cells.

    Wang J H, Zhou W W, Cheng S T, et al. Molecular medicine reports, 2015, 12(2): 1810-1816.

  18. Increased expression of formin-like 3 contributes to metastasis and poor prognosis in colorectal carcinoma.

    Zeng Y F, Xiao Y S, Lu M Z, et al. Experimental and molecular pathology, 2015, 98(2): 260-267.

  19. Correlation between microRNA‑21 and sprouty homolog 2 gene expression in multiple myeloma.

    Wang J H, Zheng W W, Cheng S T, et al. Molecular medicine reports, 2015, 11(6): 4220-4224.

Cat #: A01020

  • Size
  • Price
  • 50μl $90
  • 200μl $260
  • 1ml $860
  • 10ml $4000

Contact information

Do not hesitate to contact us if you have any questions.

  •  Customer: service@abbkine.com
  •  Message: Click to Leave
  •  Tel: +86-27-59716789
  •  Fax: +86-27-59716788
  • Global Headquarters: Bldg 1, Harbour of Technology Times, No.35, Optical Valley Ave, Wuhan, Hubei, China. 430074

Gaining Your Trust with our

High quality *
Attractive price
100% Guarantee
Secured shipment