Technical support: support@abbkine.com

Website: https://www.abbkine.com

CheKine™ Micro Acetyl Coenzyme A (Acetyl-CoA) Assay Kit

Cat #: KTB1260 Size: 48 T/96 T

FQ	Micro Acetyl Coenzyme A (Acetyl-CoA) Assay Kit		
REF	Cat #: KTB1260	LOT	Lot #: Refer to product label
	Detection Range: 1.5-3,200 nmol/mL		
	Applicable samples: Animal and Plant Tissues, Cells		
Å.	Storage: Stored at -20°C for 6 months, protected from light		

Assay Principle

Acetyl Coenzyme A (Acetyl-CoA) is widely presented in animals, plants, microorganisms and cultured cells. It is an important intermediate metabolite produced during the metabolism of biometrics. It is a pivotal substance in the metabolism of energy substances in the body. The three major nutrients-glucose, lipid, protein which could be via acetyl coenzyme A to form a common metabolic pathway - tricarboxylic acid circulation and phosphorylation. Through this path, Acetyl-CoA thoroughly could be oxidize carbon dioxide and water, and release energy for ATP synthesis. Furtherly, Acetyl-CoA a is a precursor material for the synthesis of fatty acid, ketone body, and Cholesterol and its derivatives. CheKine™ Micro Acetyl Coenzyme A (Acetyl-CoA) Assay Kit provides a simple, sensitive, rapid colorimetric Acetyl-CoA detection method. Suitable for various types of samples, especially animals or plant tissues or cells. The detection principle is that malate dehydrogenase can catalyze malate acid and NAD to produce oxaloacetic acid and NADH. Citrate synthase can catalyze Acetyl-CoA and oxaloacetic acid to produce citric acid and CoA. Based on the coupling reaction of malate dehydrogenase and citrate synthase, Acetyl-CoA content is proportional to the generating rate of NADH. NADH has a special absorption peak at 340 nm, and the calculation of the absorbance value of 340 nm can be obtained the content of Acetyl-CoA.

Materials Supplied and Storage Conditions

W!4		Size	04
Kit components	48 T	96 T	Storage conditions
Extraction Buffer	50 mL	100 mL	4°C
Reagent	1	1	-20°C, protected from light
Reagent II	5 μL	10 μL	4°C, protected from light
ReagentIII	1	1	-20°C, protected from light
Reagentl∨	15 mL	30 mL	4℃
Standard (NADH)	1	1	-20°C, protected from light

Materials Required but Not Supplied

- · Microplate reader or ultraviolet spectrophotometer capable of measuring absorbance at 340 nm
- · Ice maker, refrigerated centrifuge
- · Water bath
- 96-well UV plate or microquartz cuvette
- · Precision pipettes, disposable pipette tips
- · Deionized water
- · Homogenizer (for tissue samples)

Reagent Preparation

Extraction Buffer: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Working Reagent I: Prepare before use, add 125 µL or 250 µL Reagent I∨ while using 48 T kit or 96 T kit respectively, mix well. Store and aliquot the surplus reagent at -20°C, protected from light.

Working Reagent II: Prepare before use, add 125 µL or 250 µL Reagent V while using 48 T kit or 96 T kit respectively, mix well. Store and aliquot the surplus reagent at 4°C, protected from light.

Working ReagentIII: Prepare before use, add 11.3 mL or 22.5 mL ReagentIV while using 48 T kit or 96 T kit respectively, mix well, Store and aliquot the surplus reagent at -20°C, protected from light.

Working Solution: Prepare before use, according to the sample numbers, calculate the volume of Working Solution (samples number×0.23 mL). Mix Working Reagent | , Working Reagent || and Working Reagent || according to 1:1:90 ratio. Or directly add Reagent I and Reagent II to Reagent III and mix well (48 samples or 96 samples can be measured).

Standard (NADH): Prepare before use, add 0.5 mL or 1 mL deionized water while using 48 T kit or 96 T kit respectively, mix well, get 8,000 nmol/mL Standard. Store and aliquot the surplus reagent at -20°C, protected from light.

Standard curve setting: Dilute 8,000 nmol/mL Standard with deionized water to 3,200, 1,600, 800, 400, 200, 100, 50,0 nmol/mL standard solution as shown in the table below.

Num.	Standard Volume	Deionized Water (μL)	Concentration (nmol/mL)
Std.1	100 μL 8,000 nmol/mL	150	3,200
Std.2	100 μL of Std.1 (3,200 nmol/mL)	100	1,600
Std.3	100 μL of Std.2 (1,600 nmol/mL)	100	800
Std.4	100 μL of Std.3 (800 nmol/mL)	100	400
Std.5	100 μL of Std.4 (400 nmol/mL)	100	200
Std.6	100 μL of Std.5 (200 nmol/mL)	100	100
Std.7	100 μL of Std.6 (100 nmol/mL)	100	50
Std.8	0	200	0

Note: Std.8 is Blank Well.

Sample Preparation

Note: Fresh samples are recommended, If not assayed immediately, samples can be stored at -80°C for one month. It will be better to quantify the total protein with Protein Quantification Kit (Bradford Assay), Cat #: KTD3002, if the content is calculated by protein concentration.

- 1. Cells: Collect 5×10⁶ cells pellet, and add 1mL Extraction Buffer, Ultrasonic broken cells (power 20%, ultrasonic 3 s, interval 10 s, repeat 30 times), then centrifuge with 13,000 g for 10 min at 4°C, collect the supernatant, stand by on ice, waiting for test.
- 2. Tissues: Weigh 0.1 g tissue and mix with 1 mL Extraction Buffer. Homogenize on ice. Then centrifuge the homogenate with 2/4

Version 20220902

13,000 g for 10 min at 4°C. Stand by on ice, waiting for test.

Assay Procedure

- 1. Preheat the microplate reader or ultraviolet spectrophotometer for more than 30 min, and adjust the wavelength to 340 nm. Ultraviolet spectrophotometer was returned to zero with deionized water.
- 2. Incubate Working Solution for 10 min at 37°C (mammal) or 25°C (other species).
- 3. Operating table: in the 96-well UV plate or microquartz cuvette, follow the table below to set the test

Reagent	Test Well (µL)	Standard Well (µL)
Sample	25	0
Different Concentration Std.	0	25
Working Solution	230	230

4. Mix well, immediately read 340 nm absorbance value of the test well at 20 s and 1 min and 20 s, recorded as A₁, A₂, respectively. Then calculate the test well $\Delta A_{Test} = A_2 - A_1$. Read 340 nm absorbance value of the standard well at 1 min and 20 s, recorded as $A_{Standard}$, then calculate the standard well, $\Delta A_{Standard} = A_{Standard} - A_{Blank}$.

Note: In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples. Please reduce the sample quantity appropriately if the OD values is higher than 1.5, or reduce the volume of Extraction Buffer if the OD values is too low.

Data Analysis

Note: We provide you with calculation formulae, including the derivation process and final formula. The two are exactly equal. It is suggested that the concise calculation formula in bold is final formula.

Take the ΔA_{Standard} as the x axis and the standard concentration as the y axis, make the standard curve, get the equation, finally, get the y value by calculate the ΔA_{Test} in the equation.

1. Calculated by protein concentration:

Acetyl-CoA (nmol/mg prot)=(y×V_{Sample})÷(V_{Sample}×Cpr)=y÷Cpr

2. Calculated by fresh weight of samples:

Acetyl-CoA (nmol/g fresh weight)=(y×V_{Sample})÷(W×V_{Sample}÷V_{Extraction})=y÷W

3. Calculated by cell density:

Acetyl-CoA (U/10⁴ cells) =(y×V_{Sample})÷(500×V_{Sample}÷V_{Extraction})=y÷500

Where: Vsample volume added, 0.025 mL; Cpr: sample protein concentration, mg/mL; W: sample weight, g; VExtraction: sample extract volume, 1 mL; 500: total number of cells, 5×106.

Typical Data

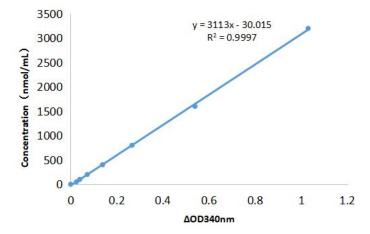


Figure 1. Standard curve of NADH

Version 20220902

3/4

Recommended Products

Catalog No.	Product Name
KTB1023	CheKine™ Micro Citrate Synthase (CS) Activity Assay Kit
KTB1270	CheKine™ Micro Pyruvate Dehydrogenase (PDH) Activity Assay Kit
KTB1230	CheKine™ Micro Succinate Dehydrogenase (SDH) Activity Assay Kit
KTB1240	CheKine™ Micro α-Ketoglutarate Dehydrogenase (α-KGDH) Assay Kit
KTB1250	CheKine™ Micro Mitochondrial Isocitrate Dehydrogenase (ICDHm) Activity Assay Kit

Disclaimer

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.

